Adaptation to Climate Change Impacts on Water Resources: A case study of the Merced River Basin

Sebastian Vicuña

PhD Candidate, University of California, Berkeley

Outline

- Background/Motivation
- Approach
- Results
- Conclusions

Background/Motivation

- Climate change impacts in California, summary:
 - Consistent effects: Earlier flows due to increase in temperature

Climate change impacts in California:

Change in timing of streamflows

Timeseries of hydrograph centroid

(Merced River at Lk. McClure)

Background/Motivation

- Climate change impacts in California, summary:
 - Consistent effects: Earlier flows due to increase in temperature
 - Possible effects: increase in variability in annual inflows
 - Uncertainty effects: changes in annual precipitation/inflows, drier or wetter?

Climate change impacts in California:

Uncertainty in annual inflows
 Annual Cumulative Inflows (Merced River at Lk. McClure)

Research questions

- Are there any "robust" policies that could be used to mitigate climate change impacts?
- •Alternatives:
 - Reservoir re-operation (e.g. flood control rules)
 - New or modified Infrastructure
 - Conjunctive use of surface and groundwater

Outline

- Background/Motivation
- Approach
- Results
- Conclusions

Basic conjunctive system representation

Approach

- Water resources optimization: how should a basin scale be operated under climate change scenario
- Complexities of Problem Formulation:
 - Non-linear (in objective function and system dynamics)
 - Includes stochastic variables (natural variability and climate change scenarios)
- A popular approach to deal with these complexities is Stochastic Dynamic Programming

Approach (part 2)

- SDP however assumes stationary hydrologic conditions (clearly not the case for climate change)
- Solution:
 - Use Annual Sampling Stochastic Dynamic Programming (Kelman et al., 1990; Faber and Stedinger, 2001) with monthly Non-Linear Programming model embedded
 - Uncertainty is not between probabilistic inflow classes (e.g. low-medium-large) but between intact hydrologic scenarios

Sampling SDP and climate change Transition between climate change scenarios

Sampling SDP and climate change Transition between climate change scenarios

Outline

- Background/Motivation
- Approach
- Results
- Conclusions

Case Study: Merced River Basin

Results

- Case Study: Merced River Basin
 - Optimization/Simulation under climate change conditions w/o adaptation
 - Inclusion of adaptation strategies

Results

Base Case: Climate Change conditions Annual Benefits time series

Base Case: Climate Change conditions System Operations

Base Case: Climate Change conditions Groundwater Levels

Results

- Case Study Development: Merced River Basin
 - Optimization/Simulation under climate change conditions w/o adaptation
 - Inclusion of adaptation strategies

Reservoir reoperation

Reservoir reoperation

Reservoir reoperation

Reservoir reoperation and Modified infrastructure

Higher Storage capacity

The strategy could be implemented at any of a set of given years: 2010, 2040 or 2070

One month earlier Two months earlier

Comparison between base case and adaptation scenarios (1% change ≈ 2-3 106\$)

No Change in Storage Capacity

Comparison between base case and adaptation scenarios (1% change ≈ 2-3 106\$)

With a Change in Storage Capacity

Comparison between base case and adaptation scenarios: System operations

Average 2070-2099 No AdaptationAverage 2070-2099 W Adaptation

Adaptation Strategy (3): Conjunctive Use

Conjunctive use: both reservoir and aquifer are operated in a coordinated way

(2% Improvement over base case)

Comparison between base case and conjunctive use scenario: System operations

Average 2070-2099 No AdaptationAverage 2070-2099 W Conjunctive Use

Comparison between base case and conjunctive use scenario: System operations

Average 2070-2099 No AdaptationAverage 2070-2099 W Conjunctive Use

Comparison between base case and conjunctive use scenario: Groundwater level

Conclusions

- Conditions in the future will change and system operations should accommodate to these changes.
- There are some strategies that could be implemented even under the uncertainties associated with changes in precipitation
- The benefits of adopting these strategies are greater if adopted later in the 21st century
- Conjunctive use seems to be a no-regret, robust option

Future steps

- Combine conjunctive use with infrastructure modification and reservoir re-operation
- Finish my dissertation!!

Acknowledgments

- Professor John A. Dracup
- Larry L. Dale, Lawrence Berkeley National Laboratories
- Michael Hanemann, UC Berkeley
- Jay Lund, UC Davis
- Edwin Maurer, Santa Clara University
- Tariq Kadir, Charlie Brush and Can Dogrul, DWR
- California Climate Change Center, UC Berkeley
- California Energy Commission, PIER

Thanks!!

svicuna@berkeley.edu

Extra slides

Approach Schematic

